Home | english  | Impressum | Datenschutz | Sitemap | KIT

Kontakt
Karlsruher Institut für Technologie
Lehrstuhl für Interaktive Echtzeitsysteme

Prof. Dr.- Ing. Jürgen Beyerer
c/o Technologiefabrik
Haid-und-Neu-Str. 7
76131 Karlsruhe

Tel:  +49 721 - 608 45910

Willkommen am Lehrstuhl für Interaktive Echtzeitsysteme

IES

Prof. Dr.-Ing. J. Beyerer

Aktuell

** Prüfungsankündigung Mustererkennung

Bitte finden Sie die Informationen und Sonderregelungen auf der Vorlesungsseite.

 

Neue Vorlesung: Optimierungsverfahren für Maschinelles Lernen und Ingenieurwissenschaften

Die Vorlesung wird im Wintersemester 2020/21 beginnen. Weitere Info finden Sie im Modulhandbuch.

 

** Klausur Automatische Sichtprüfung und Bildverarbeitung

  • Ort: Audimax
  • Termine: 15. September 2020, 08:00 - 10:00 Uhr
  • Bitte mitbringen: Studierendenausweis, Personalausweis, Alltagsmaske. Es herrscht Maskenpflicht von vor Betreten des Raumes bis zum zugeteilten Platz und vom Verlassen des Platzes bis zum Verlassen des Raumes. Während dem Schreiben der Klausur darf die Maske abgenommen werden.

 

** Klausur Mensch-Maschine-Wechselwirkung

  • Ort: Gerthsen-Hörsaal
  • Termine: 29. Juli 2020, 08:00 - 09:30 Uhr
  • Für die Studierende mit Schreibverlängerung:
    • Ort: Otto-Lehmann-Hörsaal
    • Termine: 29. Juli 2020, 08:00 – 10:30 Uhr
  • Bitte mitbringen: Studierendenausweis, Personalausweis, Alltagsmaske. Es herrscht Maskenpflicht von vor Betreten des Raumes bis zum zugeteilten Platz und vom Verlassen des Platzes bis zum Verlassen des Raumes. Während dem Schreiben der Klausur darf die Maske abgenommen werden.
  • Alle Studierenden, die die Klausur in Mensch-Maschine-Wechselwirkung: Basiswissen schreiben möchten, müssen in den Gerthsen-Hörsaal kommen.
    Eine Studierende mit Schreibverlängerungsgenehmigung wird nach der Begrüßung und der Beantwortung eventueller Fragen in den Otto-Lehmann-Hörsaal begleitet werden.
    Daher die zwei Raumangaben.

 

** Vorlesung Mustererkennung

Der Termin für die zusätzliche virtuelle Sprechstunde mit Prof. Beyerer wurde auf Donnerstag, den 23.07.2020, um 17.00 Uhr verschoben. Eine Beschreibung, wie Sie der virtuellen Sprechstunde beitreten können, finden Sie im ILIAS-Kurs zur Vorlesung.

Sehr geehrte Studierende,

da die Vorlesung Mustererkennung nicht in gewohnter Weise stattfinden kann, haben wir die Aufnahmen der Vorlesung der zurückliegenden Jahre für Sie bereitgestellt. Opencast Informatik KIT - Mustererkennung . Die Folien im pdf-Format finden Sie unter Vorlesung Mustererkennung.

Bis die Vorlesung wieder im Hörsaal stattfinden kann, sollten Sie im Wochenrhythmus die Mitschnitte der einzelnen Vorlesungstermine anschauen/anhören und dann nochmals die Folien gründlich durchschauen, ob Sie auch alles verstanden haben.

Um Verständnisfragen zu klären, werden im zweiwöchigen Rhythmus virtuelle Sprechstunden über Zoom stattfinden. Der erste Termin ist Mittwoch, der 06.05.2020, um 14.00 – 15.30 Uhr. Eine Beschreibung, wie Sie der virtuellen Sprechstunde beitreten können, finden Sie im ILIAS-Kurs zur Vorlesung.

Bitte schauen Sie auch immer wieder nach Neuigkeiten zur Vorlesung Mustererkennung auf dieser Seite.

Probabilistiche Planung

Bitte beachten Sie, dass die Vorlesung Probabilistische Planung nicht länger angeboten wird. Die Unterlagen zur letzten Vorlesungsreihe finden sie hier.

Neue Adresse

Der Lehrstuhl ist an einen neuen Standort in der Technologiefabrik umgezogen.

Lehrbuch zur Mustererkennung

Am 11. Dezember 2017 erschien das Lehrbuch "Beyerer, Richter, Nagel: Pattern Recognition: Introduction, Features, Classifiers and Principles". Weitere Information finden Sie auf der Seite des De Gruyter Verlags.

Vorlesungsangebot
Das Vorlesungsangebot des Lehrstuhls finden Sie hier.

Lehrbuch zur Automatischen Sichtprüfung
Am 30. September 2012 erschien das Lehrbuch "Beyerer, Puente León, Frese: Automatische Sichtprüfung, Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung". Weitere Information finden Sie auf der Lehrbuch-Seite oder auf der Seite vom Springer-Verlag.

Karlsruher Zentrum für Materialsignaturen
Der Lehrstuhl für Interaktive Echtzeitsysteme hat sich mit anderen Instituten des KIT und dem Fraunhofer IOSB zum Karlsruher Zentrum für Materialsignaturen KCM zusammengeschlossen. Weitere Informationen finden Sie auf der Seite des KCM.

Bachelor-, Master-, Studien- und Diplomarbeiten zu vergeben: Weitere Informationen finden Sie hier.

 
 
 
Adversarial Machine Learning for Intrusion Detection Systems in Industrial Networks
Typ:

Masterarbeit

Betreuer:

M.Sc. Ankush Meshram

Status:

abgeschlossen

Adversarial Machine Learning (ML) aims to fool the trained Machine Learning model with malicious inputs to test its robustness. Adversarial Examples (AE) generated to target classification task on relatively simple ML models can be transferred to other complex ML models. There are different threat models based on the level of knowledge of the attacker: White-box, Black-box and their combined variations. Defenses against these AE have been extensively researched: Adversarial Training, Defensive Distillation, etc. However, all of these counter-defenses fail to completely protect ML models against AEs.

 

ML-based intrusion detection system (IDS) in industrial networks are on the rise to counter ever-evolving cyber threats with malicious intent to harm industrial control systems (ICS). IDS in ICS can be classified based on detection techniques and the characteristic of ICS: protocol analysis-based, traffic mining-based, and control process analysis-based.

 

ML-based intrusion detection can become more robust when they are able to find the weakness within their models with Adversarial ML. At Fraunhofer IOSB, within Research Group Securely Networked Systems of Department Information Management and Production Control (ILT) we aim to build a platform to generate AEs for Network IDS.

 

Tasks:

  • Explore methods to generate AEs within Industrial Network Security domain
  • Develop collection of AEs for different IDS types and evaluate their effectiveness

 

Contact
Ankush Meshram, ankush.meshram@kit.edu
Anne Borcherding,  anne.borcherding@iosb.fraunhofer.de
Markus Karch, markus.karch@iosb.fraunhofer.de