Home | english  | Impressum | Datenschutz | Sitemap | KIT

Kontakt
Karlsruher Institut für Technologie
Lehrstuhl für Interaktive Echtzeitsysteme

Prof. Dr.- Ing. Jürgen Beyerer
c/o Technologiefabrik
Haid-und-Neu-Str. 7
76131 Karlsruhe

Tel:  +49 721 - 608 45910
Fax: +49 721 - 608 45926

Willkommen am Lehrstuhl für Interaktive Echtzeitsysteme

IES

Prof. Dr.-Ing. J. Beyerer

Aktuell

*Die ASB Vorlesung am Montag 23.12.19 findet nicht statt.

 

Klausur Automatische Sichtprüfung und Bildverarbeitung

Die schriftliche Prüfung im Fach ASB wird am Montag, 24.02.2020 - 14:00 bis 16:00 Uhr in Hörsaal Gerthsen stattfinden.

Klausur Mensch-Maschine-Wechselwirkung
•    Schriftlich Prüfung: Prüfungsdauer 60 Minuten, Gesamtdauer 90 Minuten
•    Ort: Gaede-Hoersaal
•    Termine:
        o    31. März 2020, 11 Uhr (Anmeldung über Campus-Management bis 24. März)
        o    29. Juli 2020, 11 Uhr (Nachholtermin, Anmeldung über Campus-Management bis 22. Juli)

Probabilistiche Planung

Bitte beachten Sie, dass die Vorlesung Probabilistische Planung nicht länger angeboten wird. Die Unterlagen zur letzten Vorlesungsreihe finden sie hier.

Neue Adresse

Der Lehrstuhl ist an einen neuen Standort in der Technologiefabrik umgezogen.

Lehrbuch zur Mustererkennung

Am 11. Dezember 2017 erschien das Lehrbuch "Beyerer, Richter, Nagel: Pattern Recognition: Introduction, Features, Classifiers and Principles". Weitere Information finden Sie auf der Seite des De Gruyter Verlags.

Vorlesungsangebot
Das Vorlesungsangebot des Lehrstuhls finden Sie hier.

Lehrbuch zur Automatischen Sichtprüfung
Am 30. September 2012 erschien das Lehrbuch "Beyerer, Puente León, Frese: Automatische Sichtprüfung, Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung". Weitere Information finden Sie auf der Lehrbuch-Seite oder auf der Seite vom Springer-Verlag.

Karlsruher Zentrum für Materialsignaturen
Der Lehrstuhl für Interaktive Echtzeitsysteme hat sich mit anderen Instituten des KIT und dem Fraunhofer IOSB zum Karlsruher Zentrum für Materialsignaturen KCM zusammengeschlossen. Weitere Informationen finden Sie auf der Seite des KCM.

Bachelor-, Master-, Studien- und Diplomarbeiten zu vergeben: Weitere Informationen finden Sie hier.

 
 
Boosting-Verfahren zur Klassifikation von industriellen Schriftzeichen
Typ:

Diplomarbeit

Betreuer:

Dipl.-Ing. Martin Grafmüller

Status:

abgeschlossen

Abgabedatum:

November 2010

Hintergrund:
Da auch in der Industrie die Zeichenerkennung immer mehr an Bedeutung gewinnt, steigt das Interesse an so genannten Smart Cameras. Sie ermöglichen es nicht nur Bilder zu erfassen, sondern sie werten diese auch aus. Dazu zählt die Segmentierung der Zeichen, Berechnung von Merkmalen, die Klassifikation und schließlich die Ausgabe des Ergebnisses. Das hat den Vorteil, dass externe Rechnersysteme weitgehend überflüssig werden, was zum einen die Kosten reduziert, aber auch eine Platzersparnis mit sich bringt.
Im gesamten Prozess der Zeichenerkennung spielt der Klassifikator die wichtigste Rolle, da dieser letztendlich die Entscheidung über die Klassenzugehörigkeit trifft. Bleibt nur die Frage: Welcher ist der Richtige? Aus der Literatur ist bekannt, dass es dazu vielerlei Ansätze gibt die alle sehr gute Ergebnisse liefern, wie z.B. Support-Vector-Machines oder Neuronale Netze. Bei dieser Arbeit soll jedoch Boosting zum Einsatz kommen, da dieses Verfahren sehr einfach ist und trotzdem in den meisten Anwendungen sehr gute Ergebnisse liefert.

Aufgabe:
Zunächst gilt es sich einen Überblick über besehenden Boosting-Verfahren und deren Einsatz in der Zeichenerkennung zu verschaffen. Ausgehend davon sind die aussichtsreichsten Verfahren zu implementieren und eventuell so zu erweitern, dass diese der Problemstellung gerecht werden. Ziel ist eine Gegenüberstellung sämtlicher Verfahren, woraus Klassifikationsgüte, Berechnungszeit und Robustheit gegen Störungen, hervorgeht.
Die daraus gewonnenen Ergebnisse sind in einer schriftlichen Ausarbeitung festzuhalten und in einem Vortrag, hier am IES, vorzustellen.

Was Sie mitbringen sollten:
  • Freude am selbständigen Arbeiten
  • Programmierkenntnisse in C oder MATLAB
  • Grundkenntnisse der Bildverarbeitung