Home | english  | Impressum | Datenschutz | Sitemap | KIT

Kontakt
Karlsruher Institut für Technologie
Lehrstuhl für Interaktive Echtzeitsysteme

Prof. Dr.- Ing. Jürgen Beyerer
c/o Technologiefabrik
Haid-und-Neu-Str. 7
76131 Karlsruhe

Tel:  +49 721 - 608 45910

Willkommen am Lehrstuhl für Interaktive Echtzeitsysteme

IES

Prof. Dr.-Ing. J. Beyerer

Aktuell

** Prüfungsankündigung Mustererkennung

Bitte finden Sie die Informationen und Sonderregelungen auf der Vorlesungsseite.

 

Neue Vorlesung: Optimierungsverfahren für Maschinelles Lernen und Ingenieurwissenschaften

Die Vorlesung wird im Wintersemester 2020/21 beginnen. Weitere Info finden Sie im Modulhandbuch.

 

** Klausur Automatische Sichtprüfung und Bildverarbeitung

  • Ort: Audimax
  • Termine: 15. September 2020, 08:00 - 10:00 Uhr
  • Bitte mitbringen: Studierendenausweis, Personalausweis, Alltagsmaske. Es herrscht Maskenpflicht von vor Betreten des Raumes bis zum zugeteilten Platz und vom Verlassen des Platzes bis zum Verlassen des Raumes. Während dem Schreiben der Klausur darf die Maske abgenommen werden.

 

** Klausur Mensch-Maschine-Wechselwirkung

  • Ort: Gerthsen-Hörsaal
  • Termine: 29. Juli 2020, 08:00 - 09:30 Uhr
  • Für die Studierende mit Schreibverlängerung:
    • Ort: Otto-Lehmann-Hörsaal
    • Termine: 29. Juli 2020, 08:00 – 10:30 Uhr
  • Bitte mitbringen: Studierendenausweis, Personalausweis, Alltagsmaske. Es herrscht Maskenpflicht von vor Betreten des Raumes bis zum zugeteilten Platz und vom Verlassen des Platzes bis zum Verlassen des Raumes. Während dem Schreiben der Klausur darf die Maske abgenommen werden.
  • Alle Studierenden, die die Klausur in Mensch-Maschine-Wechselwirkung: Basiswissen schreiben möchten, müssen in den Gerthsen-Hörsaal kommen.
    Eine Studierende mit Schreibverlängerungsgenehmigung wird nach der Begrüßung und der Beantwortung eventueller Fragen in den Otto-Lehmann-Hörsaal begleitet werden.
    Daher die zwei Raumangaben.

 

** Vorlesung Mustererkennung

Der Termin für die zusätzliche virtuelle Sprechstunde mit Prof. Beyerer wurde auf Donnerstag, den 23.07.2020, um 17.00 Uhr verschoben. Eine Beschreibung, wie Sie der virtuellen Sprechstunde beitreten können, finden Sie im ILIAS-Kurs zur Vorlesung.

Sehr geehrte Studierende,

da die Vorlesung Mustererkennung nicht in gewohnter Weise stattfinden kann, haben wir die Aufnahmen der Vorlesung der zurückliegenden Jahre für Sie bereitgestellt. Opencast Informatik KIT - Mustererkennung . Die Folien im pdf-Format finden Sie unter Vorlesung Mustererkennung.

Bis die Vorlesung wieder im Hörsaal stattfinden kann, sollten Sie im Wochenrhythmus die Mitschnitte der einzelnen Vorlesungstermine anschauen/anhören und dann nochmals die Folien gründlich durchschauen, ob Sie auch alles verstanden haben.

Um Verständnisfragen zu klären, werden im zweiwöchigen Rhythmus virtuelle Sprechstunden über Zoom stattfinden. Der erste Termin ist Mittwoch, der 06.05.2020, um 14.00 – 15.30 Uhr. Eine Beschreibung, wie Sie der virtuellen Sprechstunde beitreten können, finden Sie im ILIAS-Kurs zur Vorlesung.

Bitte schauen Sie auch immer wieder nach Neuigkeiten zur Vorlesung Mustererkennung auf dieser Seite.

Probabilistiche Planung

Bitte beachten Sie, dass die Vorlesung Probabilistische Planung nicht länger angeboten wird. Die Unterlagen zur letzten Vorlesungsreihe finden sie hier.

Neue Adresse

Der Lehrstuhl ist an einen neuen Standort in der Technologiefabrik umgezogen.

Lehrbuch zur Mustererkennung

Am 11. Dezember 2017 erschien das Lehrbuch "Beyerer, Richter, Nagel: Pattern Recognition: Introduction, Features, Classifiers and Principles". Weitere Information finden Sie auf der Seite des De Gruyter Verlags.

Vorlesungsangebot
Das Vorlesungsangebot des Lehrstuhls finden Sie hier.

Lehrbuch zur Automatischen Sichtprüfung
Am 30. September 2012 erschien das Lehrbuch "Beyerer, Puente León, Frese: Automatische Sichtprüfung, Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung". Weitere Information finden Sie auf der Lehrbuch-Seite oder auf der Seite vom Springer-Verlag.

Karlsruher Zentrum für Materialsignaturen
Der Lehrstuhl für Interaktive Echtzeitsysteme hat sich mit anderen Instituten des KIT und dem Fraunhofer IOSB zum Karlsruher Zentrum für Materialsignaturen KCM zusammengeschlossen. Weitere Informationen finden Sie auf der Seite des KCM.

Bachelor-, Master-, Studien- und Diplomarbeiten zu vergeben: Weitere Informationen finden Sie hier.

 
 
 
Invariante Objektlokalisierung und -erkennung für videogestützte Sicherheitsanwendungen
Typ:

Diplomarbeit

Betreuer:

M. Eng. Eduardo Monari

Status:

abgeschlossen

Abgabedatum:

Februar 2009

Um das menschliche Überwachungspersonal an den Bildschirmen zu entlasten und um die Früherkennung von Problemsituationen zu verbessern, werden in den letzten Jahren große Forschungsanstrengungen im Bereich der computergestützten automatischen Objekterkennung unternommen. Von Heintz (Heintz, 2007) wurde im Bereich der Objektlokalisierung ein auf Gaborfiltern basierendes Verfahren entwickelt, das mit Hilfe lokaler Merkmale eine Invarianz bei der Objektidentifikation im Bild bezüglich Translation, Rotation und Skalierung erreicht.

Im Kontext einer merkmalsbezogenen Änderungsdetektion wird in dieser Arbeit untersucht, ob sich das Verfahren für den Einsatz im Videoüberwachungsbereich eignet. Eine zyklische Objektlokalisierung soll mithilfe des Verfahrens erkennen, ob ein zuvor im Bild markiertes Objekt entwendet wurde oder noch vorhanden ist. Neben der grundsätzlichen Funktionalität eines Gaborfilters wird in der Arbeit auf die Überführung der Bildinformation in die Dimensionen eines neuen Merkmalsraums eingegangen. Mit Hilfe der automatisierten Bestimmung von besonders signifikanten Punkten wird das Objekt im Referenzbild festgelegt und nachfolgend fortlaufend in den Testbildern lokalisiert. Anschließend an dieses Punktmatchingverfahren wird erläutert, wie das Objektmatching sicherstellt, dass es sich bei der Menge der gefundenen Punkte um das gesuchte Objekt handelt. Abschließend wird das erweiterte Verfahren auf seine Praxistauglichkeit bezüglich Lokalisierungsqualität und Laufzeit in verschiedenen Anwendungsszenarien wie Diebstahlsicherung von Objekten oder auch einer beispielhaften Gesichtserkennung untersucht.