Home | english  | Impressum | Sitemap | KIT
Data Association in a World Model for Autonomous Systems

Konferenzbeitrag

Links:
Autoren:

Marcus Baum
Ioana Gheta
Andrey Belkin
Jürgen Beyerer
Uwe D. Hanebeck

Quelle:

Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2010.

Seiten:

187-192

Konferenz:

IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Salt Lake City, USA, 5.-7. September 2010

This contribution introduces a three pillar information storage and management system for modeling the environment of autonomous systems. The main characteristics is the separation of prior knowledge, environment model and sensor information. In the center of the system is the environment model, which provides the autonomous system with information about the current state of the environment. It consists of instances with attributes and relations as virtual substitutes of entities (persons and objects) of the real world. Important features are the representation of uncertain information by means of Degree-of-Belief (DoB) distributions, the information exchange between the three pillars as well as creation, deletion and update of instances, attributes and relations in the environment model. In this work, a Bayesian method for fusing new observations to the environment model is introduced. For this purpose, a Bayesian data association method is derived. The main question answered here is the observation-to-instance mapping and the decision mechanisms for creating a new instance or updating already existing instances in the environment model.