Home | english  | Impressum | Datenschutz | Sitemap | KIT
Anomaly Detection in Surveillance Videos
Typ:

Masterarbeit

Links:
Betreuer:

M.Sc. Thomas Golda

Status:

zu vergeben

Möglicher Beginn:

ab sofort

Anomaly Detection in Surveillance Videos

Das Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB ist eines der größten Institute für angewandte Forschung auf dem Gebiet der Bildgewinnung und Bildauswertung in Europa. Die Abteilung Videoauswertesysteme (VID) beschäftigt sich mit der automatischen Auswertung von Signalen bewegter bildgebender Sensorik in komplexen, ggf. nichtkooperativen Szenarien. Diese Sensorik wird beispielsweise im Aufklärungs- und Überwachungsbereich als integrierte Komponente in fliegenden, weltraumgestützten oder mobilen landgestützten Plattformen verwendet. VID entwickelt und integriert hierfür Bildauswertealgorithmen für autonome oder interaktive Systeme.

Beschreibung
Großveranstaltungen stellen stets ein hohes Sicherheitsrisiko für Besucher und Unbeteiligte dar. Aus diesem Grund sind Sicherheitskräfte und Polizei darauf angewiesen die Veranstaltung sowohl durch Bodenpersonal, als auch über ideokameras im Blick zu behalten. Die große Menge an Videodaten die dabei anfällt, stellt die Einsatzkräfte jedoch vor extrem große Herausforderungen. Deshalb werden Systeme benötigt, die das Personal dabei unterstützen frühzeitig Risiken zu identifizieren, indem abnormales Verhalten von Personen in aufgezeichneten den Videoströmen erkannt wird.

Aufgabenstellung
Ihre Aufgabe ist den aktuellen Stand der Literatur zum Thema Anomaliedetektion in Überwachungskameras zu erarbeiten und anhand der Ergebnisse der Recherche, sowie dem Beispielverfahren aus [1] ein eigenes Verfahren zu entwickeln bzw. zu erweitern.

Beispiel [1]: https://arxiv.org/pdf/1801.04264v1.pdf

Voraussetzungen

  • Studienfach: Informatik, Mathematik, Elektrotechnik, Angewandte Physik oder vergleichbar
  • Gutes Verständnis für die (theoretischen) Grundlagen von Deep Learning
  • Gute Programmierkenntnisse (idealerweise Python)
  • Erfahrung mit den Deep Learning Frameworks Tensorflow bzw. Keras vorteilhaft
  • Fähigkeit zum selbstständigen Arbeiten
  • Bereitschaft, sich in neue Themengebiete einzuarbeiten und Freude am Einbringen eigener Ideen

Kontakt
Thomas Golda, M. Sc.
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung
Fraunhoferstraße 1, 76131 Karlsruhe
Tel.: 0721 / 6091-631
thomas.golda@iosb.fraunhofer.de