Home | english  | Impressum | Datenschutz | Sitemap | KIT

Kontakt
Karlsruher Institut für Technologie
Lehrstuhl für Interaktive Echtzeitsysteme

Prof. Dr.- Ing. Jürgen Beyerer
c/o Technologiefabrik
Haid-und-Neu-Str. 7
76131 Karlsruhe

Tel:  +49 721 - 608 45910
Fax: +49 721 - 608 45926

Willkommen am Lehrstuhl für Interaktive Echtzeitsysteme

IES

Prof. Dr.-Ing. J. Beyerer

Aktuell

*Die ASB Vorlesung am Montag 23.12.19 findet nicht statt.

 

Klausur Automatische Sichtprüfung und Bildverarbeitung

Die schriftliche Prüfung im Fach ASB wird am Montag, 24.02.2020 - 14:00 bis 16:00 Uhr in Hörsaal Gerthsen stattfinden.

Klausur Mensch-Maschine-Wechselwirkung
•    Schriftlich Prüfung: Prüfungsdauer 60 Minuten, Gesamtdauer 90 Minuten
•    Ort: Gaede-Hoersaal
•    Termine:
        o    31. März 2020, 11 Uhr (Anmeldung über Campus-Management bis 24. März)
        o    29. Juli 2020, 11 Uhr (Nachholtermin, Anmeldung über Campus-Management bis 22. Juli)

Probabilistiche Planung

Bitte beachten Sie, dass die Vorlesung Probabilistische Planung nicht länger angeboten wird. Die Unterlagen zur letzten Vorlesungsreihe finden sie hier.

Neue Adresse

Der Lehrstuhl ist an einen neuen Standort in der Technologiefabrik umgezogen.

Lehrbuch zur Mustererkennung

Am 11. Dezember 2017 erschien das Lehrbuch "Beyerer, Richter, Nagel: Pattern Recognition: Introduction, Features, Classifiers and Principles". Weitere Information finden Sie auf der Seite des De Gruyter Verlags.

Vorlesungsangebot
Das Vorlesungsangebot des Lehrstuhls finden Sie hier.

Lehrbuch zur Automatischen Sichtprüfung
Am 30. September 2012 erschien das Lehrbuch "Beyerer, Puente León, Frese: Automatische Sichtprüfung, Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung". Weitere Information finden Sie auf der Lehrbuch-Seite oder auf der Seite vom Springer-Verlag.

Karlsruher Zentrum für Materialsignaturen
Der Lehrstuhl für Interaktive Echtzeitsysteme hat sich mit anderen Instituten des KIT und dem Fraunhofer IOSB zum Karlsruher Zentrum für Materialsignaturen KCM zusammengeschlossen. Weitere Informationen finden Sie auf der Seite des KCM.

Bachelor-, Master-, Studien- und Diplomarbeiten zu vergeben: Weitere Informationen finden Sie hier.

 
 
Video- und Deep Learning-basierte Erkennung von Personenattributen
Typ:

Bachelorarbeit, Masterarbeit, Hiwi-Stelle

Betreuer:

M.Sc. Andreas Specker

Status:

zu vergeben

Möglicher Beginn:

ab sofort

Video- und Deep Learning-basierte Erkennung von Perso-nenattributen

Die sogenannte „Pedestrian Attribute Recognition“ versucht, basierend auf Eingabebildern von Personen, automatisiert passende Attribute zuzuweisen. Relevante Attribute sind dabei zum Beispiel das Geschlecht, das Alter oder Informationen zur Kleidung der dargestellten Person. Ein Anwendungsfall ist beispielsweise der Abgleich der erkannten Attribute mit einer semantischen Beschreibung, um eine Person in großen Videodatenmengen finden zu können.

Aufgabenstellung

Im Gegensatz zu anderen Forschungsgebieten wurden im Bereich der Attributerkennung bislang nur wenige Verfahren [2] vorgeschlagen, die die zeitliche Komponente miteinbeziehen. Werden jedoch anstatt Einzelbildern Tracklets einer Person als Eingabe verwendet, kann eine robustere Attributschätzung erreicht werden, weil Fehler, die nur in einzelnen Frames auftreten, korrigiert werden könnnen. Deine Aufgabe besteht darin Verfahren aus anderen Gebieten auf die Attributerkennung zu übertragen und zu evaluieren. Danach kann basierend auf den gewonnenen Erkenntnissen ein eigenes Verfahren entwickelt werden, das die Stärken und Schwächen der untersuchten Verfahren adressiert.

Voraussetzungen

  • Studienfach: Informatik, Mathematik, Elektrotechnik, Angewandte Physik oder vergleichbar
  • Gute Programmierkenntnisse (idealerweise Python)
  • Fähigkeit zum selbstständigen Arbeiten
  • Bereitschaft, sich in neue Themengebiete einzuarbeiten und Freude am Einbringen eigener Ideen
  • Gutes Verständnis der Grundlagen von Deep Learning
  • Erste praktische Erfahrungen mit CNNs wünschenswert
  • Bewerbungen bitte mit Lebenslauf und Notenspiegel

Quellen & Literatur

[1] Wang, X. et al.: Pedestrian Attribute Recognition: A Survey, 2019: https://arxiv.org/pdf/1901.07474.pdf

[2] Chen, Z. et al.:  Video-Based Pedestrian Attribute Recognition, 2019: https://arxiv.org/pdf/1901.05742.pdf

[3] MARS Attributes Datensatz: http://irip.buaa.edu.cn/mars_duke_attributes/index.html

Kontakt

Andreas Specker, M. Sc.
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung
Fraunhoferstraße 1, 76131 Karlsruhe
Tel.: 0721 / 6091-629
Andreas.specker@iosb.fraunhofer.de