CAPTURING GROUND TRUTH SUPER-RESOLUTION DATA
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ABSTRACT

Super-resolution (SR) offers an effective approach to boost quality
and details of low-resolution (LR) images to obtain high-resolution
(HR) images. Despite the theoretical and technical advances in the
past decades, it still lacks plausible methodology to evaluate and
compare different SR algorithms. The main cause to this problem
lies in the missing ground truth data for SR. Unlike in many other
computer vision tasks, where existing image datasets can be utilized
directly, or with a little extra annotation work, evaluating SR requires
that the dataset contain both LR and the corresponding HR ground
truth images of the same scene captured at the same time.

This work presents a novel prototype camera system to address
the aforementioned difficulties of acquiring ground truth SR data.
Two identical camera sensors equipped with a wide-angle lens and
a telephoto lens respectively, share the same optical axis by plac-
ing a beam splitter in the optical path. The back-end program can
then trigger their shutters simultaneously and precisely register the
region of interests (ROIs) of the LR and HR image pairs in an au-
tomated manner free of sub-pixel interpolation. Evaluation results
demonstrate the special characteristics of the captured ground truth
HR-LR face images compared to the simulated ones. The dataset is
made freely available for noncommercial research purposes.

Index Terms— Super-resolution, face hallucination, image reg-
istration, imaging system, dataset

1. INTRODUCTION

In general, many existing computer vision algorithms can only be
applied to image data of standard size and quality. When the resolu-
tion of the test images goes under a certain limit, the performance is
expected to drop dramatically. Instead of employing high-resolution
(HR) camera systems or specific algorithms for low-resolution (LR)
data, super-resolution (SR) provides the possibility of reusing the ex-
isting data and tools. As opposed to interpolation-based methods, SR
is able to recover the missing high-frequency information in the orig-
inal LR image by combining multiple images with sub-pixel shifts
among them [1], or through inference of local HR structure from
similar HR-LR pairs from external training data [2] or from the in-
ternal pyramid of the LR image itself [3]. The reader is referred to
[4, 5] for an overview of state-of-the-art SR approaches.
Considering the surge of interest in SR research, datasets for
evaluation purposes have received significantly less attention. De-
spite the fact that a huge number of datasets have been built in the
computer vision society and many of them can be leveraged in var-
ious tasks [0, 7], unfortunately, evaluation of SR requires a pair of
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Fig. 1: Scheme of the proposed system.

HR-LR images of the same scene, one as input for the algorithms,
and the other as ground truth for quantitative assessment of the out-
put. Therefore, to the best of our knowledge, all of the previous work
has made a compromise by synthetically generating the LR images
using the available HR images in existing datasets, pretty much like
the recently published benchmark paper [8]. Nonetheless, if and
how much the simulated LR image can model the complicated op-
tical properties of the real image is yet to be justified. Even for the
synthesis, strategies regarding blurring, resizing and noise still re-
main controversial [9].

On the other hand, strict conditions must be met when a new SR
dataset is collected, of which the biggest challenges include tempo-
ral and spatial consistency. Thus the possibility of taking two images
consecutively or the adoption of a parallel multi-camera system sim-
ilar to stereo vision is eliminated, as different capturing time is not
suitable for most scenes which are not completely static, and paral-
lax of the latter setup is also not preferred for the evaluation.

To circumvent these challenging requirements, a prototype of a
novel dual-camera setup is proposed in this paper. The key idea is
to avail of a beam splitter, often found in many optical interferom-
eter systems like the autofocus sensor in CD/DVD/BluRay players
[10], which converts the original optical path into two identical ones
and redirects them towards the sensors of two cameras respectively.
In this way, as long as the images are taken simultaneously, both
the temporal and spatial prerequisites are fulfilled. Capturing of LR
and HR images is realized by a wide-angle lens and a telephoto lens
mounted on the cameras respectively. Automatic image registration
based on the Lucas—Kanade algorithm [11, 12] aligns the same re-
gion of interests (ROIs) for the pairs of images without sub-pixel
shifts. In our preliminary evaluation, a face SR dataset is collected
with the proposed device, which is analyzed in diverse aspects to
show distinct image properties and made publicly available for non-
commercial research purposes.
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Fig. 2: Image formation with a thin lens.

2. HARDWARE SETUP

Capturing ground truth image data for evaluating SR algorithms is
not a trivial task. The LR image is given as input to compute the SR
result with higher resolution, which is compared with the original
HR image for quantitative or qualitative assessment. Since the SR
image is directly computed from the LR input, in order to conduct
valid evaluation, the HR image is required to be captured exactly
for the same scene at the same instant of time as that of the LR im-
age. Some existing schemes, e.g., taking the HR-LR image pairs in
sequence, or on the basis of a stereo camera setup, can only partly
meet the prerequisites. Violation of temporal consistency due to un-
synchronized recording in the first case, and spatial consistency due
to parallax in the second case, forces the method to be applicable to
completely static scenes or those with a very large distance, respec-
tively. In comparison, the novel dual-camera setup we present here
successfully bypasses these limitations.

The scheme of the system is depicted in Fig. 1. The core idea
is the introduction of a beam splitter into the optical path, which
splits the incident light from the scene into two identical parts. This
can be realized with a beam splitter of 50:50 split ratio. When the
light enters through the entrance face of the cube and hits the dielec-
tric coating applied to the hypotenuse surface, which serves as an
interference filter, half of the light is reflected and the rest is trans-
mitted. Two identical cameras are directed at the exit faces of the
beam splitter, on which a wide-angle lens and a telephoto lens are
mounted respectively, such that the first camera with larger field of
view (FOV) captures a larger scene with lower resolution, and the
other one with smaller FOV captures zoomed HR details.

The upcoming problem is the choice of lenses and the positions
of the cameras to achieve the desired magnification factor for the
HR-LR image pairs in SR. According to the thin lens formula [13]
depicted in Fig. 2, magnification factor mopject., i.e., the size of the
image in proportion to the size of the original object is

S _f _f=5
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where f denotes the focal length of the lens, and S; and Sy are
the distances from the lens center to the object and the image re-

spectively. For the magnification factor mgr which we are more
interested in, the following approximation applies
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where the object distance is similar for both cameras and much larger
than the focal length, i.e., S1 > f. On the other side, since mobject

Fig. 3: Prototype of the proposed system.

for non-macro lenses is very small, one has S2 =~ f, then from
Fig. 2, the camera positions can be determined by

S2HR — S2,LR = fHR — fLR, (3)

when the focal lengths for HR and LR cameras are approximately
computed by Eq. (2) for the given magnification factor mgsg.

However, by virtue of the complex optical elements in real ob-
jectives, the thin lens approximation does not always apply. As
a consequence, Egs. (2) and (3) do not necessarily hold. Instead
of employing prime lenses with the exact fixed focal lengths from
Eq. (2), zoom lenses are utilized as a workaround, so that the true
focal lengths can be fine-tuned in the proximity of the theoretical
values. An interactive adjustment process is presented in §3.

The built prototype system for the scheme in Fig. 1 is illustrated
in Fig. 3. A 50:50 beam splitter for visible light in the range of 400—
700 nm is located at the intersection of the two camera axes. The
C-mount cameras possess a large 1/1.2” CMOS sensor with merely
2 megapixels (1920 x 1200), which allows for higher signal-to-noise
ratio (SNR) thanks to larger pixel size. An ultra-wide angle 4.8 mm
/1.8 prime lens, which serves as the LR lens, and a 12.5-75 mm
/1.2 zoom lens for the HR images are mounted on each camera. The
6 zoom ratio is ideal to experiment with different magnification
factors mggr. The large aperture of both lenses is also fast enough for
low-light indoor scenarios. In order to mitigate in-plane rotational
discrepancy between the pair of images, one camera is installed on a
kinetic mounting surface for pitch and roll adjustment.

In summary, the final prototype is able to account for scaling and
rotation in the registration process, leaving only the translational off-
set to be determined algorithmically. As such, concerns that a pos-
terior compensation in scaling and rotation with interpolation could
deteriorate the original image quality are addressed.

3. IMAGE REGISTRATION

The hardware prototype in §2 performs a rough presetting of the
desired SR ground truth capturing workflow. Raw HR-LR image
pairs with approximately the desired magnification factor can be ac-
quired. However, further processing must be done, before the images
are ready for the evaluation purpose. Since the HR image covers
only a small region in the center of the corresponding LR image, the



surrounding irrelevant part should be filtered out. In the meantime,
fine-tuning of the magnification factor mgg obtained in Eq. (2) can
also be done during the registration procedure.

Given a coarse alignment in scaling and rotation from the hard-
ware system, only translational motion needs to be estimated, which
greatly reduces the degree of freedom (DOF) and computational
complexity to exploit the classical but yet powerful Lucas—Kanade
algorithm [11, 12, 14]. The objective is to obtain the update A0 of
the parametrized motion 6 by minimizing the sum of squared differ-
ences (SSD) between the fixed template T and moving image I

STINW(E; 0+ AB) —T(€)|3 (4)
3

subject to warping W (&; ) of the pixels £ [11]. Leveraging Taylor
series expansion and the partial derivatives with respect to @, closed-
form solution can be obtained. Later, it is proved that performing
inverse update on the template T instead of I
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can substantially boost the efficiency, as the inverse Hessian and
steepest descent images can be precomputed at the initial (£;0) in-
stead of the current iteration (&; 0) [12].

Concretely, with a pair of HR-LR images, we first set our tem-
plate T as the center of the LR image, or as the ROI detected by
some algorithm (e.g., faces by [15]). The moving image I to be
aligned is obtained by downsampling the HR image with the desired
magnification factor mgr. The initial translation OEO) for I is set
as the HR image, or again based on the localized ROI. Subsequently,
continuous Lucas—Kanade translational registration is conducted and
the result error image is shown to the user. After manual tuning of
tip and tilt on the kinetic platform and the focal length fur for the
HR camera, accurate alignment of HR-LR image pairs without any
sub-pixel interpolation is computed. The whole image registration
procedure is summarized in Alg. 1.

Algorithm 1: Interactive HR-LR image registration

Input: Roughly registered HR-LR image pair
Output: Precisely registered HR-LR image pair
Initialize ROIs for HR and LR images;

Crop template T from the LR image;

Shrink the HR image with factor msr as image I;

Initialize translation BEO) for I;
while not aligned do
Compute 0 using Lucas—Kanade algorithm;
Crop I based on 0¢;
Compare error image of T and cropped I;
if in-plane rotation not aligned then
| Adjust tip and tilt of the kinetic platform;
end
if magnification not aligned then
‘ Adjust fHR;
end

o 0 N A N R W N -

-
W N =D

o
N

end

—
n

4. IMAGE ANALYSIS

In SR, the observation model of the conventional image acquisition
process turns the HR image x of dimension msg N1 X mggr N2 into

(b)
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Fig. 4: Center crops of an example pair of (a) HR and (b) LR images
captured by our system with registered (c) HR and (d) LR ROIs.

the captured LR image z of dimension N1 X N2 with
z = (Bx o Wg(x)) lmeg + 1, (6)

where W first warps the original signal via the parametrized motion
6. Then B models blurring by the K x K kernel k and | denotes
decimation with factor mggr. The additive system noise, often as-
sumed to be white, is represented by n. The objective of SR is to
reversely model the image formation process in Eq. (6) given the LR
image z, which is an ill-posed problem with only mgsgr being known,
requiring extra knowledge from internal or external sources [4, 5].

In this work, since both the ground truth HR-LR image pairs
x and z are captured and the motion @ is compensated for by the
image registration process in §3, analysis of the images is a lot easier
compared to SR, which simplifies Eq. (6) into

z = (k*X) }mgp + 1, N

where * denotes 2D-convolution. Manipulation of Eq. (7) must be
performed to convert both of the intractable operators into matrix
multiplication to allow for further calculation

vec(z) = Smgr Tx vec(Kmiror) + vec(n), ®)

where the square blurring kernel k is mirrored and vectorized by
2
vec(Kmimor) € RE™. T vectorizes each K x K sliding window in
the HR image x as a row vector and stacks them in vertical direction,
yielding a mZg N1 N2 x K? matrix. As such, the 2D-convolution
is replaced exactly by a matrix multiplication. Finally, S,,qy €
2
ZN1N2xmSr NNz jq g gparse mapping matrix to shrink the HR im-
age to LR using nearest neighbor, i.e., for each LR pixel represented



(a) (b) (©)

Fig. 5: Results analyzed on sample HR-LR image pairs: (a) the error
images between the LR and HR images blurred with the recovered
kernels without symmetry constraint in (b) and downsampled, (c) the
recovered kernels with symmetry constraint, (d) Gaussian kernels
with the lowest HR-LR reconstruction errors.

by row ¢ in S;4 , only column j corresponding to the selected HR
pixel is set to one.

Assuming independent noise n with uniform variance facilitates
straightforward least squares solution of the blurring kernel k with
maximum-likelihood estimation (MLE) by minimizing the SSD

IS msr Tx vec(Kmimor) — vec(z) |3, ©)

which can also be found in blind deconvolution [16]. A globally
optimal solution for the kernel exists by solving for the convex
quadratic programming problem [17] in the form of

min|[Ay —b|3 =miny 'ATAy —2b" Ay +c.  (10)
Yy Yy

Imposing non-negative and unit ¢;-norm constraints ensures a valid
estimate of the blurring kernel. Optionally to resemble Gaussian
kernels, additional symmetry constraint is applicable.

5. EXPERIMENTS

The presented camera system is deployed in an indoor environment
to take HR-LR face images for evaluation. A face detector [15]
is employed to automatically extract the ROIs from the raw image
pairs. The commonly used magnification factor msgr = 4 is chosen
as in [4]. The dataset consisting of 31 participants taken at different
views is published for noncommercial research purposes'.

An example of the captured and registered images is illustrated
in Fig. 4. By dropping the outer region of the LR image, the FOV
in Fig. 4b is roughly equivalent to the HR image in Fig. 4a with 1/4
of the pixels in both dimensions. The resulting LR face has a width
of less than 30 pixels, covering only the central 1.5% of the total
1920 pixels, which is critical to diminish distortion and chromatic
aberration of the 4.8 mm ultra-wide angle lens.

lhttp://ies.anthropomatik.kit.edu/publ.php?kev*qu7
capturing

(a) NRMSE: 2.14% (b) NRMSE: 2.16% (C) NRMSE: 2.18% (d) NRMSE: 2.34%

Fig. 6: Row 1: average error images between all LR and HR images
blurred with the kernels in the second row and downsampled; Row
2: recovered kernels using all HR-LR image pairs (a) without and
(b) with symmetry constraint, (c) Gaussian kernel with the lowest
HR-LR reconstruction error, (d) an alternative Gaussian kernel.

In Fig. 5, the blurring kernels for three image pairs are com-
puted and the results are demonstrated. Obviously, the registra-
tion process incorporating hardware and algorithmic solutions re-
veals high precision in both magnification and translational offset.
Solely at the silhouette of the faces, where aliasing effect could hap-
pen in LR images, more visible error can be seen (see Fig. 5a). No-
tably, the true blurring kernels in Fig. 5b do not resemble the widely
accepted Gaussian kernels. By enforcing symmetry constraint in
quadratic programming, the obtained kernels in Fig. 5c are more akin
to the best Gaussian kernels subject to reconstruction error in Fig. 5d.
Moreover, for images with higher reconstruction error, larger kernel
size is seen to smooth out the outliers.

Since noise features prominently in our real SR data, possibly
leading to overfitting the individual kernels to noise, we also recover
globally optimal kernels by providing T« and vec(z) in Eq. (9) with
all HR and LR images respectively, which reveals a more Gaussian-
shaped result with vertically a wider span than in horizontal direc-
tion (see Fig. 6a). In terms of normalized root mean square error
(NRMSE) w.r.t. the dynamic range, the Gaussian kernel in Fig. 6¢ is
deemed a good approximation. However, note that a slightly wider
Gaussian kernel in Fig. 6d can yield much higher error. Hereby the
unique image properties of ground truth SR data and the importance
of accurate blurring kernel estimation for SR algorithms is shown.

6. CONCLUSIONS AND FUTURE WORK

The challenges of acquiring ground truth SR datasets are addressed
in this paper. A dual-camera imaging system featuring a beam split-
ter to allow for capturing of HR and LR images with temporal and
spatial synchronization is proposed. An interactive process is pre-
sented for the nontrivial pixel-accurate registration of the HR-LR
image pairs. The necessity of such ground truth data for SR is justi-
fied by the analysis of the image characteristics.

The SR community has paid relatively less attention to the effect
of blurring kernel. Those that do often assume Gaussian kernels with
the width known a priori. It is proved in [9] that this problem actually
matters, which inspires us to publish our data. Our future work will
focus on further evaluation on kernel and noise properties as well as
SR algorithms to spur more interest for these important aspects.
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